Common neural codes for the recognition of faces and voices

Recent research on the neurocognitive dynamics of human social cognition has revealed important findings to define the neural systems that enable individuals to perceive and recognize signals in the visual (e.g. face expression) and auditory channel (e.g. voice expressions). The description of the neurocognitive mechanisms and the neural systems and network involved in these types of social cognition have been however limited by recent technical systems (i.e. traditional scan settings in functional magnetic resonance imaging, fMRI) to record and by analytic approaches to analyze such brain data (i.e. linear statistical analyses). These technical and analytical limitations also limited the depths and diversity of neuroscientific interpretation and conclusion about the neurocognitive dynamics supporting social cognition. In the proposed project we aim to overcome these limitations in several ways by performing a fMRI experiment including human volunteers. (1) We aim to take advantage and to further develop recent developments in fast fMRI neuroimaging of human individuals. New fMRI scanning techniques now allow recording brain data in the sub-second range, which provides better estimates about neural processes of social cognition with 3-4 times better temporal resolution than before. (2) Based on these new neuroimaging techniques, researchers will be also enabled to quantify new measures of neural activity during social cognition task. Fast neuroimaging technique now will provide data that allow new analysis approaches of these data and resulting neural measures (e.g. neural BOLD oscillations) that pave the way for new and diverse insights in the neural dynamics of social cognition. (3) The proposed project is interdisciplinary and links two research groups and research expertise at UNIGE (i.e. Geneva Medical Center; medical discipline) and UZH (i.e. Institute of Psychology; psychological discipline) on a common topic of social cognition, but viewed from different sensory modalities. We aim to investigate the neural dynamics of social face perception (i.e. the expertise of Prof. Patrik Vuilleumier) and social voice perception (i.e. expertise of Prof. Sascha Frühholz). Recent research pointed to a potential common neural code of processing. (4) A final new feature of the project is also to not only investigate natural face and voice recognition but also to investigate the perception of digital faces (e.g. in computer games) and digital voice (e.g. in car navigations system) as they are now frequently encountered in daily environments. The first major objective of this proposal is to perform a fMRI study including ~20 human individuals to investigate the hypotheses that common mechanisms of the neural processing of face and voice signals can only sufficiently be investigated by using new fast neuroimaging techniques and by using new statistical measures of brain activity. A second major objective is to investigate these mechanisms by examining the brain differences in perceiving natural and digitally synthesized social signals. The proposed project is intended as a seed project that lays the groundwork to establish an UNIGE-UZH link on state-of-the-art human neuroimaging in Switzerland, and by developing new fast neuroimaging techniques and analysis techniques it will inspire future research that will strengthen the UNIGE-UZH link. Participants : Prof. Sascha Früholz, University of Zurich Prof. Patrik Vuilleumier, University of Geneva